РЕКЛАМА

На шаг ближе к квантовому компьютеру

Серия прорывов в квантовых вычислениях

Обычный компьютер, который теперь называют классическим или традиционным компьютером, работает на основе базовой концепции нулей и единиц (нулей и единиц). Когда мы спрашиваем компьютер для выполнения задачи за нас, например математического расчета или записи на прием или чего-либо, связанного с повседневной жизнью, эта задача в данный момент преобразуется (или переводится) в строку из нулей и единиц (которая затем называется input), этот ввод обрабатывается алгоритмом (определенным как набор правил, которым необходимо следовать для выполнения задачи на компьютере). После этой обработки возвращается новая строка из 0 и 1 (называемая выходом), которая кодирует ожидаемый результат и преобразуется обратно в более простую, удобную для пользователя информацию в качестве «ответа» на то, что пользователь хотел, чтобы компьютер сделал. . Удивительно, что независимо от того, насколько умным или умным может казаться алгоритм и каким бы ни был уровень сложности задачи, компьютерный алгоритм выполняет только одну вещь - манипулирует цепочкой битов, где каждый бит равен 0 или 1. манипуляции происходят на компьютере (со стороны программного обеспечения), а на машинном уровне они представлены электрическими цепями (на материнской плате компьютера). В аппаратной терминологии, когда ток проходит через эти электрические цепи, он замкнут и разомкнут, когда нет тока.

Классический против квантового компьютера

Следовательно, в классических компьютерах бит - это единичная информация, которая может существовать в двух возможных состояниях - 0 или 1. Однако, если мы говорим о квантовый компьютеры, они обычно используют квантовые биты (также называемые «кубитами»). Это квантовые системы с двумя состояниями, однако, в отличие от обычного бита (хранящегося как 0 или 1), кубиты могут хранить гораздо больше информации и могут существовать при любом предположении этих значений. Чтобы объяснить лучше, кубит можно представить как воображаемую сферу, где кубит может быть любой точкой на сфере. Можно сказать, что квантовые вычисления используют возможность субатомных частиц существовать в более чем одном состоянии в любой момент времени и при этом быть взаимоисключающими. С другой стороны, классический бит может находиться только в двух состояниях - например, на конце двух полюсов сферы. В обычной жизни мы не можем видеть эту «суперпозицию», потому что, если рассматривать систему целиком, эти суперпозиции исчезают, и это причина того, что понимание таких суперпозиций неясно.

What this means for the computers is that quantum computers using qubits can store a huge amount of information using lesser energy than a classical computer and thus operations or calculations can be relatively done much faster on a quantum computer. So, a classical computer can take a 0 or 1, two bits in this computer can be in four possible states (00, 01, 10 or 11), but only one state is represented at any given time. A quantum computer, on the other hand works with particles that can be in superposition, allowing two qubits to represent the exact same four states at the same time because of the property of superposition freeing up the computers from ‘binary constraint’. This can be equivalent to four computers running simultaneously and if we add these qubits, the power of the quantum computer grows exponentially. Quantum computers also take advantage of another property of quantum physics called ‘quantum entanglement’, defined by Albert Einstein, entanglement is a property which allows quantum particles to connect and communicate regardless of their location in the вселенная so that changing the state of one may instantaneously affect the other. The dual capabilities of ‘superposition’ and ‘entanglement’ are quite powerful in principle. Therefore, what a quantum computer can achieve is unimaginable when compared to classical computers. This all sounds very exciting and straightforward, however, there is problem in this scenario. A quantum computer, if takes qubits (superposed bits) as its input, its output will also be similarly in a quantum state i.e. an output having superposed bits which can also keep changing depending on what state it is in. This kind of output doesn’t really allow us to receive all the information and therefore the biggest challenge in the art of quantum computing is to find ways of gaining as much information from this quantum output.

Квантовый компьютер будет здесь!

Quantum computers can be defined as powerful machines, based on the principals of quantum mechanics that take a completely new approach to processing information. They seek to explore complex laws of nature that have always existed but have usually remained hidden. If such natural phenomena can be explored, quantum computing can run new types of algorithms to process information and this could lead to innovative breakthroughs in materials science, drug discovery, robotics and artificial intelligence. The idea of a quantum computer was proposed by American theoretical physicist Richard Feynman way back in 1982. And today, technology companies (such as IBM, Microsoft, Google, Intel) and academic institutions (like MIT, and Princeton University) are working on quantum computer prototypes to create a mainstream quantum computer. International Business Machines Corp. (IBM) has said recently that its scientists have built a powerful quantum computing platform and it can be made available for access but remark that it’s not enough for performing most of the tasks. They say that a 50-qubit prototype which is currently being developed can solve many problems which classical computers do today and in the future 50-100 qubit computers would largely fill the gap i.e. a quantum computer with just a few hundred qubits would be able to perform more calculations simultaneously than there are atoms in the known вселенная. Realistically speaking, the path to where a quantum computer can actually outperform a classical computer on difficult tasks is laden with difficulties and challenges. Recently Intel has declared that the company’s new 49-qubit quantum computer represented a step towards this “quantum supremacy”, in a major advancement for the company who had demonstrated a 17-bit qubit system only just 2 months ago. Their priority is to keep expanding the project, based upon the understanding that expanding number of qubits is the key to creating quantum computers that can deliver real-world results.

Материал - ключ к созданию квантового компьютера

Материальный кремний был неотъемлемой частью вычислений на протяжении десятилетий, потому что его ключевые возможности делают его хорошо подходящим для общих (или классических) вычислений. Однако, что касается квантовых вычислений, решения на основе кремния не были приняты в основном по двум причинам: во-первых, трудно контролировать кубиты, изготовленные на кремнии, а во-вторых, все еще неясно, могут ли кремниевые кубиты масштабироваться так же хорошо, как и другие. решения. Одним из важных достижений, недавно разработанных Intel1 новый тип кубита, известный как «спиновый кубит», который производится на обычном кремнии. Спиновые кубиты очень похожи на полупроводниковую электронику, и они передают свою квантовую мощность, используя спин одного электрона на кремниевом устройстве и управляя движением с помощью крошечных микроволновых импульсов. Два основных преимущества, которые привели к движению Intel в этом направлении: во-первых, Intel как компания уже вложила значительные средства в кремниевую промышленность и, следовательно, имеет необходимый опыт в области кремния. Во-вторых, кремниевые кубиты более полезны, потому что они меньше обычных кубитов и, как ожидается, будут сохранять согласованность в течение более длительного периода времени. Это имеет первостепенное значение, когда квантовые вычислительные системы необходимо масштабировать (например, переход от 100 кубитов к 200 кубитам). Intel тестирует этот прототип, и компания рассчитывает производить чипы с тысячами небольших массивов кубитов, и такое производство, когда оно выполняется массово, может быть очень хорошим для масштабирования квантовых компьютеров и может изменить правила игры.

В недавнем исследовании, опубликованном в Наука, недавно разработанный образец для фотонных кристаллов (то есть дизайн кристалла, реализованный на фотонном чипе) был разработан командой из Университета Мэриленда, США, который, как они утверждают, сделает квантовые компьютеры более доступными.2. Эти фотоны представляют собой наименьшее известное количество света, и в этих кристаллах есть дыры, которые заставляют свет взаимодействовать. Различные рисунки отверстий меняют то, как свет изгибается и отражается через кристалл, и здесь были сделаны тысячи треугольных отверстий. Такое использование одиночных фотонов важно для процесса создания квантовых компьютеров, потому что тогда компьютеры будут иметь возможность вычислять большие числа и химические реакции, которые современные компьютеры не могут выполнять. Конструкция чипа позволяет передавать фотоны между квантовыми компьютерами без потерь. Эта потеря также рассматривалась как большая проблема для квантовых компьютеров, и поэтому этот чип решает эту проблему и обеспечивает эффективный путь квантовый информация из одной системы в другую.

Будущее

Квантовые компьютеры обещают выполнять вычисления, намного превосходящие возможности любого обычного суперкомпьютера. У них есть потенциал, чтобы произвести революцию в открытии новых материалов, позволяя моделировать поведение материи вплоть до атомного уровня. Это также вселяет надежду на искусственный интеллект и робототехнику, обрабатывая данные быстрее и эффективнее. Создание коммерчески жизнеспособной системы квантовых вычислений может быть выполнено любой крупной организацией в ближайшие годы, поскольку это исследование все еще является открытым и является справедливой игрой для всех. Основные объявления ожидаются в ближайшие пять-семь лет, и, в идеале, с учетом ряда достигнутых успехов, инженерные проблемы должны быть решены, и квантовый компьютер на 1 миллион или более кубитов должен стать реальностью.

{Вы можете прочитать исходную исследовательскую работу, щелкнув ссылку DOI, приведенную ниже в списке цитируемых источников}

Источник (ы)

1. Кастельвекки Д. 2018. Кремний набирает обороты в гонке квантовых вычислений. Природа. 553 (7687). https://doi.org/10.1038/d41586-018-00213-3

2. Sabyasachi B. et al. 2018. Интерфейс топологической квантовой оптики. Наука. 359 (6376). https://doi.org/10.1126/science.aaq0327

Команда SCIEU
Команда SCIEUhttps://www.ScientificEuropean.co.uk
Scientific European® | SCIEU.com | Значительные достижения науки. Воздействие на человечество. Вдохновляющие умы.

Подписка на рассылку

Быть в курсе всех последних новостей, предложений и специальных объявлений.

Самые популярные статьи

Устойчивое сельское хозяйство: сохранение экономики и окружающей среды для мелких фермеров

Недавний отчет показывает инициативу устойчивого сельского хозяйства в...

3D-биопечать впервые собирает функциональную ткань человеческого мозга  

Ученые разработали платформу для 3D-биопечати, которая собирает...

CoViNet: Новая сеть глобальных лабораторий по изучению коронавирусов 

Новая глобальная сеть лабораторий по изучению коронавирусов CoViNet...
- Реклама -
94,525ПоклонникиПодобно
47,683ПодписчикиПодписаться
1,772ПодписчикиПодписаться
30ПодписчикиПодписаться